An ART-based fuzzy adaptive learning control network
نویسندگان
چکیده
This paper proposes a reinforcement fuzzy adaptive learning control network (RFALCON), constructed by integrating two fuzzy adaptive learning control networks (FALCON), each of which has a feedforward multilayer network and is developed for the realization of a fuzzy controller. One FALCON performs as a critic network (fuzzy predictor), the other as an action network (fuzzy controller). Using temporal difference prediction, the critic network can predict the external reinforcement signal and provide a more informative internal reinforcement signal to the action network. The action network performs a stochastic exploratory algorithm to adapt itself according to the internal reinforcement signal. An ART-based reinforcement structure/parameter-learning algorithm is developed for constructing the RFALCON dynamically. During the learning process, structure and parameter learning are performed simultaneously. RFALCON can construct a fuzzy control system through a reward/penalty signal. It has two important features; it reduces the combinatorial demands of system adaptive linearization, and it is highly autonomous.
منابع مشابه
INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملAdaptive Learning Control Network
This paper proposes a reinforcement fuzzy adaptive learning control network (RFALCON) for solving various reinforcement learning problems. The proposed RFALCON is constructed by integrating two fuzzy adaptive learning control networks (FALCON’S), each of which is a connectionist model with a feedforward multilayer network developed for the realization of a fuzzy controller. One FALCON performs ...
متن کاملAdaptive Neuro Fuzzy Sliding Mode Based Genetic Algorithm Control System to Control of a pH Neutralization Process
In this paper, an adaptive neuro fuzzy sliding mode based genetic algorithm (ANFSGA) controlsystem is proposed for a pH neutralization system. In pH reactors, determination and control of pH isa common problem concerning chemical-based industrial processes due to the non-linearity observedin the titration curve. An ANFSGA control system is designed to overcome the complexity of precisecontrol o...
متن کاملFuzzy Adaptive Resonance Theory with Group Learning and its Applications
Adaptive Resonance Theory (ART) is an unsupervised neural network based on competitive learning which is capable of automatically finding categories and creating new ones. Fuzzy ART is a variation of ART, allows both binary and continuous input pattern. In this study, we propose an additional step, called “Group Learning”, for the Fuzzy ART in order to obtain more effective categorization. This...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks
دوره 7 3 شماره
صفحات -
تاریخ انتشار 1996